NUSC Technical Report 8533
14 April 1989

* AD-A211 050

Alias-Free Wigner Distribution
Function and Complex Ambiguity
Function for Discrete-Time Samples
DTIC
ELECTE
Surface ASW Directorate AvG °3‘9"QD
D %

Naval Underwater Systems Center
Newport, Rhode Island / New London, Connecticut

Approvad for public release; distribution Is uniimited. 8 9

8 07 092

(1)




Preface

This research was conducted under NUSC Project No. A75205, Subproject
No. RROOOO-NO1, "Applications of Statistical Communication Theory to
Acoustic Signal Processing," Principal Investigator Cr. Albert H. Nuttall
(Code 304). This technical report was prepared with funds provided by the
NUSC In-House Independent Research and Independent Exploratory Development
Program, sponsored by the Office of Chief of Naval Research,

Keviewed and Approved: 14 April 1989

A Ueltotto

W. A, VonWinkle
Associate Technical Director
Research and Technology




UNCLASSIFIED
ECURITY CLASSIFICATION OF THIS PAG

REPORT DOCUMENTATION PAGE

‘ 1a. REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS
UNCLASSIFIED
N 2a. ;ECUR"V CLAS;IF'CA“ON AUTHORITY 3. OI;IN'U”ON/AVA'..AI .IL”Y OF REPORT
- [I5 BECLASSFICATION / DOWNGRADING SCHEDULE ) Approved for public release;
distribution is unlimited.
[ 7€ PERFORMING ORGANIZATION REPORT NUMBER(E) 13, MONITORING ORGANIZATION REPORT NUMBER(S)
TR 8533
. e are o
%2, NAME OF PERFORMING ORGANIZATION 65, OFFICE SYMBOL | 76, NAME OF MONITORING ORGANIZATION
. Naval Underwater : (f applicadle) y
| * |——2ustems Center Code 304
6. ADDRESS (City, State, and ZIP Code) 75, ADDRESS (City, State, and 2IP Code)

New London Laboratory,
New London, CT 06320

8a. NaME OF FUNDING / SPONSORING 8b. OFFICE SYMAOL [ 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMEER
ORGANIZATION (ffice of Chief (if applicable)
|of Naval Research :
8c. ADORESS (City, State, and 2IP Code) 10. SOURCE OF FUNDING NUMBERS
N PROGRAM PROJECT TASK WORK UNI
gm?rf\g?::n aw\]zggigf;%o SLEMENT NO. | NO, NO. ACCESSION No
1]

11, TITLE (Include S«umyﬂmlkmoﬁ)
AL 1AS-FREE WIGNER DISTRIBUTION FUNCTION AND COMPLEX AMBIGUITY FUNCTION FOR DISCRETE=TIME

12, P(RSONAL AUTHOR(S)
tall -
1%« TYPE OF RIPORY 130, TIME COVERED 14, OATE OF REPORT (Year, Month, Day) [18. PAGE COUNT

FROM T0 19849 eu:” 14

P B
!

18. SUPPLEMENTARY NOTATION

17 COSATt CODES 18, SUBJECT TERMS (Continue an reverse if necessary and identify by block number)
FIELO GROUP $UB.GROLIP 5Altasing Elimination, Bandlimited Spectrum
Discrete T1me Samp11ng Diamond Gating Function

L—w Samn1 1n‘1 ;
19. Ans'm.cr (Continue on reverse If necessary and identify by block number) k . )
1f an arbitrary complex.continuous waveform s(t) with finite overall o

1

frequency extent F Hertz is‘'sampled with time increment A < 1/F, the
aliasing can be controlled and the continuous time waveform s(t)
reconstructed exactly at any desired time instant from waveform samples
{s(ka)) . ©On the other hand, 1t 4s commonly believed that aliasing of the
corresponding Wigner distribution function (WOF) can only be avoided by

sampling twice as fast; 1.e., 4 < (2F)" {s thought to be required.
20. DISTRIBUTION / AVAILABILITY OF ABSTRACY 21, ABSTRACT SECURITY CLASSIFICATION

D UNCLASSIFEDIUNLIMITED ] SAME AS Rer, Clotc usens UNCLASSIFIED

220 NAME OF RESPONSISLE INDIVIDUAL 11b. rmmonc (mcludo Area Code) [ 12¢. OFFICE SYMBOL

DD FORM 1473, 84 MAR 83 APR !dmon may be used until onhaunmd SECURITY SSIFICATION O $ PAGE
All ather editions are obsalete. CLASSIFICATI FIHSP

UNCLASSIFIED




W_
SKEURITY SLARSIFICATION OF THI§ PAGE

18. {(Cont'd.)
Interspersed Aliasing Lobes
Temporal Correlation

Spectral Correlation
Ambiguity Function

19, (Cont'd.)
- Alternatively, interpolation of the time data has been suggested as a means
of circumventing aliasing of the WOF; however, the computational burden has

proven excessive 1f done by sinc function interpolation. .

It 1s demonstrated here that this conjecture is false, and that the

l/")“ S

usual sampling cr1ter1on.;@;<>1/F. suffiées for exact reconstruction of the
original continuous WOF, as well as the complex ambiguity function (CAF), at
all time,frequency locations, without an excessive amount of computational
effort.) The inadequacy of earlier investigations was due to incomplete
processing of all the information available in data samples {s(ka} .

Correct processing eliminates the troublesome close-in aliasing lobes,
leaving only the standard aliasing lobes that can be suppressed if sampiing
increment 4 < 1/F. The new feature is a diamond-shaped gating function in

the two-frequency domain, where interspersed aliasing lobes occur.

The required data processing for an alias-free WDF and CAF 1s strikingly
simple. It requires that the available time data be immediately transformed
to the frequency domain, and that the frequency domain versions of the WOF
and CAF integrals be employed, rather than the time domain forms.
Discretization of the reconstructed alias-free WOF and CAF in both time and
frequency is then investigated and the required FFT sizes and ranges of
variables are determined. Interpolation of samples {s(kaﬂ , or

reconstruction of s(t) from these samples, is not necessary nor utilized.

UNCLASSIFIED

SECURITY CLASIFICATION QF THIS FAdR




TR 8533

TABLE OF CONTENTS
Page
LIST OF TLLUSTRATIONS . . . & v ¢ ¢ v v v v ¢ o v o o & e e e e e 19

LIST OF SYMBOLS . . v & v v v v v v v v e v i o e o o v o e s e e s i1

INTRODUCTION & v v v v o o v v e e e o v 4 o e e o e e e 0 e vy 1
NOTATION . . . . . . . .. e e e e e e e C e e e e e e N 3
WAVEFORM CHARACTERIZATION AND RATE OF VARIATION . . . . . . . e v 6
Spectrum of Sampled Waveform . . . ¢« v « ¢« ¢« v ¢ ¢ v 4 e e v 0 8
Examp]es . L » [ * L] L] ) [ L) . [ [} [ » L] 1] L] L] [ ] * L] * [} * [ L] [ 11
TWO-DIMENSIONAL CONTINUQUS FUNCTIONS & v v v v ¢ v ¢ v v o v o o o s 14
TWO-DIMENSIONAL FUNCTIONS FOR DISCRETE-TIME SAMPLES . . . . . e e 17
Sampled Temporal Correlation Function . . . . . . . + . . + . 17
Approximate Wiyner Distribution Function . . . . . . . . . . . . 18
Approximate Spectral Correlation Function via WOF . . . . . . . . 23
Approximate Complex Ambiguity Fumction . . . . . . . . . .. 28
Approximate Spectral Correlation Function via CAF . . . . . . K}
Summary Status in A11 Four Domains . . . +« « v ¢ v v v v o v 4 34
RECOVERY OF ORIGINAL CONTINUOUS TWO-DIMENSIONAL FUNCTIONS . . . . . . 36
Simplification of SCF Ag(v,f) « ¢ v v o v v v v 4 v v v o o v v s 36
Recovery of Original NDE and CAF . . v v o v v e e e e 39
Recovery of Original TCF . .« & & v v v« v v o v v o s v o v » 39
Direct Time Domain Recovery of Cont1nuous WOF . .« v v v v v v s 40
Discussion . . . . . . . . .. e e e e e e e e e e e . 41
DISCRETE PROCESSING IN FREQUENCY DOMAIN . . . « « v v v v v v o v 4 & 44
Evaluation of WOF . . . . . . « v v ¢ v v v v v v v e e e 44
Discretization in Time and Frequency ...... e e e e e e 47
Increments in t and f . . . . . e e e e e e e e e e e e e e 48
Summary of WOF Equations . . . . « ¢« « v ¢ ¢« ¢ ¢« ¢« v v e v 49
Evaluation of CAF . v v v ¢ ¢ v v v v o b e e e e e e e e 50
INTERPOLATION OF TIME WAVEFORM . . . . . + + . + « « « « o e e 51
DISCUSSION/SUMMARY ., ., . . . . . . . .. C e e e e e e e e 54
Time Domain Approach . . « v « ¢ « v v ¢ v v v e e e e e e 54
Frequency Domain Approach . . . . . . . . . . .. e e e e e e 55
COmMPAPISON & & v v v v v e e e e e e e e e e e e e e 55
APPENDIX A. EXTENTS AND RATES OF VARIATION OF TCF, WDF, CAF, SCF . . A-1
APPENDIX B. [IMPULSIVE SAMPLING APPROACH . . . « v ¢« v v« v v v o 4 8-
APPENDIX C. RECOVERY VIA DIRECT CONVOLUTION . . . . . . + « « + + . -1
APPENDIX D. EVALUATION OF CAF . . . « v v v v ¢ o v v o o v 0 o o u D-1
APPENDIX E. TCF OF IMPULSIVELY SAMPLED WAVEFORM . . . . . . . . . . £-1

REFERENCES . . . . . . . . . . . .. e e e e e e e e .o R-1




TR 8533

LIST OF ILLUSTRATIONS

Figure Page
1 Bandlimited Waveform Spectrum S(Ff) . . . . . . . + + « . . 7

.2 spectrum ¥(f) of Sampled Waveform . . . . . . ., . . . . . 7

3 Extent of Spectral Correlation Function A(v,f) . . . . . . 16 ’

4 Available values of TCF R(t,t) . . . + + v v v v v v v o 18

5 WOF Approximations . . . . . . . e e e e e e e 21

6 Approximate SCF Aa(u.f) e e e e e e e e e e e 26

1 - CAF Approximations . « « . . ¢ v 0 e v 0 e e e e e e 30

8 Locations of Available Information . . . . . . . .. . . 35

9 ' WaVEFOMM S(E) v v e e e e e e e 43
TN0 TIME-ATIASEd WOF . . v e e e e 45
11 Time-Aliased Waveform 8(t) . . . . . . . . . v v v\ . 52
A-1 Extents of the Two-Dimensional Functions . . . . . . . .. A-3
A-2 Spectrum of Real Waveform . . . . . . . . . .. . . .. A-6
C-1 sample Values of AZJ7?t.r) e e e e e e -5
0-1 Dalay-Aliased CAF . . o & « v ¢ ¢ v v o v v e e 0-3
£-1 Impulse Locations for ri(t.r) n (E-9) . . . . v v v v E-4

£-2 Impuise Locations for ai(o.f) in (E=31) . . . ... L E-4




s(t)

S(f)

S(f)
W(t,F)

R(t,x)
x(vyt)
A(v,f)
Wa(t,f)
Aa(v,f)
D(v,f)
Xa(vyv)
3(f)

—

(t,f)

= R =

$(t)
W(t,f)

LIST OF SYMBOLS

time

complex waveform

frequency

voltage-density spectrum of s(t), (13)
tota) bandwidth of S(f), (14) and figure 1
time sampling increment, (15)
approximation to S(f), (16)

WOF, (26), (33)

time separation, (26), (32)

frequency separation, (26), (35)

TCF, (32)

CAF, (34)

SCF, (35)

approximate WOF, (40) and (41)
approximate SCF, (46) and (58)

diamond gating function, (53)
approximate CAF, (56) and (57)

spectrum computed from time samples, (69)

TR 8533

LACC&SMH For
NTIS  CRAL
DIiC 1AB

Justihication

bt o e e m

Distribution |

b

t-Av}u
Ot

Al i

bt ettt st

Umannounced &

Avaihibib

R

e p———

| 7
Q

BO4NaEs Gt o s o
s et i S

e

e —
ty Codes

[T ARP

[

ier

|

overall effective duration of s(t), (84) and figure 9

FFT size, (86)
frequency domalin WDF approximation, (91)
size of FFT, (99), (113)

time aliased waveform, (114) and figure 11

time domain WOF approximation, (123)




TR 8533

LIST OF SYMBOLS (Cont'd)

sub 1 impulsive approximations, (B-1),(8-2)

d(t.f) interpolation function in time t, (Q—S)

d(v, ) interpolation function in delay ¢, (C-6)
S(t,r) two-dimensional interpolation function, (C-9)

ABBREVIATIONS v
FFT Fast Fourier Transform, (12)

WOF Wigner Distribution Function, (26),(33)

TCF Temporal Correlation Function, (32)

CAF Complex Ambiguity Function, (34)

SCF Spectral Correlation Function, (35)

iv




TR 8533

ALIAS-FREE WIGNER DISTRIBUTION FUNCTION AND
COMPLEX AMBIGUITY FUNCTION FOR DISCRETE-TIME SAMPLES

INTRODUCTION

The attributes of the Wigner distribution function (WDF) have come under
close scrutiny in recent years; see, for example, [1,2,3] and the references
listed therein. However, the numerical calculation of the WOF from discrete
time data still suffers from the belief that the sampling rate of a given
time waveform must be twice as large for computation of an alias-free WOF,
as the rate required for reconstruction of the original continuous
waveform, If true, this would double the number of data points that must be

collected to cover a given time 4nterval, and greatly increase the number of
subsequent computations. This contention applies to the complex analytic

waveform as well as to a real waveform,

It 1s the purpose of this report to establish the fact that the sampling
rate need not be doubled, and that an alias-free WOF, as well as complex
ambiguity function (CAF), can stil11 be quickly and efficiently obtained,
provided that 311 the information in the available data stream is extracted
and properly processed. Some recent effort on this topic [4,5,6] did not
discover the particular complete set of processing required, leading to the
conjecture [5, page 1068] that 1t was not possible to accomplish the desired
goal for the WOF.
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We will show not only that the desired goal can be achieved, but that
the required data processing for an alias-free WOF and CAF is strikingly
simple. OQur approach to the solution initially involves the four
time/frequency domains associated with the WDF and its various’ Fourier
transforms. However, in hindsight, an extremely simple and direct method of
obtaining the WOF and CAF will be presented, which requires only FFTs (fast

Fourier transforms) for its implementation.

An alias-free discrete WDF and CAF have been achieved in [7] and [8], by
means of interpolating either the waveform time samples or the Spectrum
frequency samples. Also, the ranges and required increment sizes in time
and frequency of the various two~dimensional functions have been carefully
scrutinized in (7], by discrete Fourier transform techniques. However, thut
approach does not i1luminate how the various aliasing lobes interact and can
he controlled, Furthermore, we utilize a continuous approximation approach
(rather than a discrete Fourier technique), which lends tremendous insight
into the shortcomings of current processing methods and brings out the
fundamenta) properties of the varisus two-dimensional functions and their
domains of definition. The final discretization in time and frequency is

only done with deference to practical computer evaluation.

In fact, we will not define a discrete WOF or CAF here. Instead, we
attempt to recover the WDF and CAF of the original continuous time waveform,
by developing approximations and then controlling or eliminating the errors
in these approximations, Only after this 1s accompiished, do we then address

discretization of the time and frequency arguments of the two-dimensional

functions of interest.




TR 8533

NOTATION

For economy of presentation, a number of notational and manipulative

shortcuts are employed here. We have collected them all together at this-

paint, and will employ them freely later, with minimal comment. We define

1 for |x| <1/2

rect(x) = (1)

0 otherwise

sinlex) e a1 x . (2)

sinc(x) = por

The symbols f and 3 without 1imits denote that integration and summation

are to be conducted over the complete range of nonzero integrand and summand,
respectively.
The convolution of two functions g(x) and h(x) is denoted by

g(x)®h(x) = fdu g{u) h(x - u) . (3)

The two-dimensional convolution of two functions is

Xy .
atx,y) @ hixy) = [ auav gluw hix - uy - ) (4)

The Fourier transform of a time domain function s(t) 4into its spectrum

in the frequency domain f {is according to the pair of relations

S(f) = S'dt exp(-12rft) s(t) ,

s(t) = J'df exp(i2«ft) S(f) . (5)
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Then the Fourier transform of a product of time functions is equal to the

convolution of the two spectra:

J.dt exp(-i2vft) a(t) b(t) = A(f)@B(f) . (6)

The infinite impulse train in time t, with spacing 4, is

A Z&(t - na) , n integer . (7)
n

[ts Fourier transform is another infinite impulse train in frequency f, with

reciprocal spacing:

j.dt exp(-12vft) A Ea(t - na) = Za(f - %) . (8)

n n

Combination of (6) and (8) leads to a very useful relation that is employed

frequently in the following:

fdt exp(-12nft) a(t) a za(t - na) =
n

-A(f)ezm-ﬁ)- 2= (9)

The discrete Fourier transform operation arises frequently; consider

2(n) = :Egexp(-izwkn/N) z(k) for all n . (10)
k
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The periodicity of Z(n) means that it only need be computed for one period,
namely 0 < n < N -1, The absence of 1imits on the sum in (10) means that
1t goes from k = -= to +=, However, since z(k), Z(k £ N), z(k ¢ 2N),

. a1l receive the same weight in (10), regardless of the value of n, the

values of {;(kﬁ can be "collapsed” according to

%z(kwm for 0 £k €N -1

Z(k) = . (1)
0 otherwise

and (10) becomes identically

N=1
Z2(n) = S exp(-12wkn/N) Z(k) for all n . (12)

k=0
For N highly composite, FFT routines can be employed for efficient evaluation
of (12) for 0 < n <N -1, The manipulation of (10) into (12) 1s called
collapsing (or prealiasing), and the operation 1n (11) {s modulo N.addition.
The nonzero values of {Zk‘ in (10) can occur anywhere on the k-axis, and
there can be an arbitrary number of them; nevertheless, (12) is an identity

with (10). The value of 2(n) for any n can be obtained immediately from the

FFT output, by looking up the value in location n modulo N.
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WAVEFORM CHARACTERIZATION AND RATE OF VARIATION

The continuous complex waveform of interest is s(t), with

Faurier spectrum

S(f) = fdt exp(-120ft) s(t)  for all f . (13)

We presume here that spectrum S(f) 1s bandlimited, with tota] extent F Hz;
i.e.,

S(f) =0 for |f| > F/e . (14)

Notice in figure 1 that spectrum S(f) 1s centered at f = 0, without loss of
generality, since waveform s(t) could be multipiied by exp(-iZ«fot) to

downshift it by fo Hz, to any convenient center frequency, as desired.

If we were given a real waveform, we would replace it by 1ts analytic
waverorm or complex envelope, thereby allowing the minimal possible
time-sampling rate that can still exactly represent and recover the complex
waveform. This sampling rate is half that required for sampling the
corresponding real lowpass waveform, without loss of information,
Nevertheless, the decreased sampling rate appiied to the complex waveform is
sti11 sufficient to get an alias-free WOF and CAF. (Of course, the samples

are now complex, whereas they were formerly real for the real waveform case.)
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4 S
-F/2 0 Fl2 —
Figure 1. Bandlimited Waveform Spectrum S(f)
. 3@
lS'(-ﬂl aljasivg
/ lobe
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Figure 2. Spectrum S(f) of Sampled Waveform
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SPECTRUM OF SAMPLED WAVEFORM

Waveform s(t) 1is sampled at time increment A seconds, yielding samples
{s(ke)}  for a1l dinteger k . (15)

The spectrum of this sampled waveform is defined by means of a Trapezoidal

approximation to defining integral (13):

S(F) = a :EE exp(-i2rfak) s(ka) = .
‘
- { 4t epc-tznrt) s 0 S a0t -k -
R
-5 @ Dar - & a Ssir - gorany, (16)
‘ k

where we used (6)-(9). The approximating spectrum §(f) has period 1/4 in f
and is depicted in figure 2. It will have nonoverlapping cliasing lobes if

A<‘F. | (17)

This fundamental sampling rate condition will be presumed to be true,
henceforth. In fact, in order to keep the number of samples {s(kAﬂ small,
(17) will be presumed to be closely met. It is very important to minimize
the number of samples that must be manipulated, so that the computational

burden in evaluating the WOF is not overwhelming.

Another interpretation of approximation g(f) is afforded hy 1ine 2 of
(16): §(f) is the spectrum (Fourier transform) of the signal s(t) sampled
(multiplied) by the infinite impulse train at spacing A. This alternative

interpretation will also arise later, when we investigate sampling relative

to the WOF and its various two-dimensional transform domains.
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Since sampling rate condition (17) is presumed to be met, then spectrum
g(f) in figure 2 can be gated with a rectangular function, and S(f) can be

recovered; i.e.,

S(f) = S(f) rect(fa)  for.all f . (18)

Ther2fore, the time waveform s(t) can also be recovered exactly, for all t,

by means of inverse transform (5):

s(t) = jdf exp(i2nft) S(f) rect(fa) =

« 5(t) @ %smc(%) . (19)

However, since from l1ine 2 of (16), product waveform
S(t) = s(t) A ZA(t - ka) = A Zs(ka)’ §(t - ka) , (20)
3 3

then (19) becomes

s(t) = Zs(ka) sinc(-} k) forall t, (21)
K

which 1s the standard interpolation formula for a bandlimited waveform.

It should be pointed out here that (21) is not an attractive
computational procedure, and that an excellent alternative is avajlable.

Namely, from (16), compute from the available samples,

§(f) = & Eexp(-izqﬂ\k) ske)  for [f] <51, (22)
K

and then use the top line of (19) to recover waveform
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1
24
s(t) = Sdf exp(12eft) S(F)  for all t . (23)

-1

2a
The reason this gating procedure is attractive is that (22) and (23) can both
be done by FFT procedures.* Also, this seemingly trivial sidelight will
reoccur in WOF and CAF reconstruction, where it will have a significant

impact.

Notice that we have not defined a discrete spectrum, per se., Rather, we
have concentrated on getting an approximation g(f) to the original continuous
spectrum S(f), both defined for all f, If sampling condition (17) is met,

A < 1/F, the approximation affords the possibility of exact recovery of S(f)
at any f. This philosophy, namely avoiding arbitrary definitions of discrete
functions, in favor of direct approximations to the desired continuous
functions, 1s pursued throughout this report. It is believed that this
clarifies the fundamental 1imitations and processing that must be performed
in order to achieve the desired quantities. Finally, after demonstrating

the viability of this approach, in order to reduce the mathematical equations
to practical calculations, we discretize the time and/or frequency arguments
of the approximations, as appropriate, and manipulate the equations into
attractive FFT forms. We end up, of course, with discrete data processing

forms that are suitable for efficient computer realization, but the

*Actually, termination of the sum in (22) at finite k 1imits will yield an
approximation to §(f); the error can be controlled to any desired degree by

taking enough terms. Also, the 1nte?ra1 in (23) will have to be
approximated, say, by the Trapezoidal rule; the attendant time-aliasing can

be minimized by choosing the frequency increment small enough. These details
will be investigated later.
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discretization in time/frequency is deferred to the latest possible
location, since it is not fundamental to the ideas of controlling or

eliminating aliasing.

The sampling increment 4 will not be set equal to 1 in this report, for
several reasons, It is easier to keep track of dimensions, and dimensional
checks on the equations ‘are accomplished more readily. It 1s also easier to
obtain physical interpretation of time instants and increments, as well as
frequency 1imits and bandwidths. Finally, 1t will be seen to eliminate
confusion and ambiguity as to precisely where time and frequency samples of
the temporal correlation function, WOF, and CAF are being taken; the

importance of this last point can not be overemphasized.
EXAMPLES

It 1s very informative at this point to consider a couple of continuous
waveforms and their corresponding WOFs, in terms of their rates of variation.
Consider first, spectrum

1/F for |f] < F/2
s(f) = 1 rect(f) , (24)

0 otherwise

for which the waveform is

$(t) = sinc(Ft) = for a1l t . (25)

uft

The corresponding WOF, at time t and frequency f, is [9, (10)]
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W(t,f) = J'df exp(~i2afe) s(t + §) s (t - 5=

= (o0 exptizmety scr + B $Nr - 2

- 2|f) /F E
f f] <
«th o l ] 2
- for all t
0 for |f] > 5 '
- %6 -2 J-fF—‘-)an (2Ft(1 - ZJ%L)] rect(%) . (26)

Then, for instance, the slice of the WOF at zero frequency,
W(t,0) = & sinc(2Ft) (27)

varies twice as fast as waveform s(t) in (25). Therefore, although sampling
s(t) in (25) with time increment & < 1/F 1s sufficient to reconstruct s(t),
we need a time increment half as large in order to adequately sample slice
(27) of the WOF at f = 0, In fact, W(t,f) in (26) varies faster with t then

s(t) does, whenever (f} < F/4.

This example points out that the WOF must be computed twice as finely as
the waveform samples, lest important {nformation about the energy .
distribution of s(t) in t,f space be lost. 1In fact, 1f (27) were computed

at time points

tn = (n + %) % for all n , (28)
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which have time increment At = 1/F, then the WDF values obtained would be

w6n+32') JF , 9-%51nc(2n+1) =0 for all n . (29)

We would be led to believe from samples (29) that there is no energy along

the f = 0 1ine in t,f space, whereas continuous version (27) indicates a

considerable contribution.

A second example is

. 2
s(t) = exp(—tg>.
20

S(f) = V27 @ exp(-202af?) , (30)
for which the WOF is
2 222
W(t,f) = 2o exp(- 5 - 4rg £°] . ' (31)
[- ]

This WDF varies faster with t than s(t) does, and faster with f than S(f)

does. [In fact, the rates of variation of W(t,f) and ‘s(t)[2 are the same

with t, while those of W(t,f) and [s(f)|? are the same in f.

Both of the examples above {1lustrate the need to compute the WDF at
finer increments than are adequate for the time waveform or spectrum.
However, this does not mean that the time waveform need be sampled more
frequently than requirement (17). Rate (17) is fine for sampling waveform

s(t), but the corresponding WOF can and must then be computed at finer

increments.

13
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TWO-DIMENSTONAL CONTINUOUS FUNCTIONS

For & continuous waveform s(t) with spectrum S(f), there are four useful
two-dimensional characterizations. The first is the continuous temporal

correlation function (TCF)

R(t,e) = st + 5 8"t -5 foran t,r. (32)

variable t is absolute time in seconds, while t is relative time or time

separation. The corresponding Wigner distribution function (WDF) s a

Fourier transform on «:

W(t,f) = I dr exp(-12rft) R(t,t) for all t,f . (33)

The alternative Fourier transform on t yields the complex ambiguity function
(CAF):

x(v,t) = .f dt exp(-12wvvt) R(t,x) for all v,r . (34)
Functions W and x are two-dimensional Fourier transforms of each other.

Finally, completing both routes (by t or by ¢), we have the spectral
correlation function (SCF) as another Fourier transform, according to

several equivalent forms

14
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A(v,f) = .Ydt exp( -12wvt) W(t,f) =
- fd‘!‘ exp(~i2nfx) x(v,t) =

o [ dt ar exp(-t2mut - 120f2) R(t,0) =
=S(F+3) ST(F -3 forall u,f, (35)

This last relation in terms of the spectrum S(f) of waveform s(t) will turn
out to be extremely important and useful. It also enables interpretation of
f as absolute frequency in Hz, while v is relative frequency or frequency

separation,

The names for the TCF and SCF have been drawn from the similarity of
their forms in (32) and (35), respectively, to correlation operations. The

latter name 1s also used in [10, (5)=(7)] for a similar quantity.

Recalling the bandlimited character of S(f) in (14) and figure 1, we see
that SCF A(v,f) 1n (35) can be nonzero only when

If:§,< E. (36)

This region in the two-frequency domain (v,f plane) 1s depicted in figure
3. It {s a diamond-shaped region centered at the origin of the v,f plane.
Outside this diamond, SCF A(v,f) 1s ‘identically zero. Thus, a bandlimited
spectrum S(f) 1s reflected in the v,f domain as a diamond-1imited SCF A(v,f).

15
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Since (35) can be inverted to give
W(t,f) = j'du exp(12evt) A(v.f) .
(v, ) = j.df exp(i2«fr) A(v,f) , (37)

it follows from figure 3 that

Wt,f) =0 for |f| > Fr2,

X(v,t) = 0 for ]0‘ >F . (38)
Thus the WOF and CAF are bandlimited in their respective frequency variables.

These properties will be useful later when we study the effects of aliasing

in the various domains. More generally, the extents and rates of variation

of the TCE, WOF, CAF, and SCF are summarized in appendix A,
The following symmetry properties on the TCF and SCF reduce computational
effort by a factor of two:
R(t,-1) = R'(t,7) ,

A(-v,f) = A"(v,f) .
These follow immediately from (32) and (35), respectively.

2 F

/2
,«""”‘ F

=)

<H2.

Figure 3. Extent of Spectral Correlation Function A(v,f)
16
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TWO-DIMENSIONAL FUNCTIONS FOR DISCRETE-TIME SAMPLES
The available data samples of waveform s(t) are, as given 41 (15),

{s(kAﬂ for integer k .

SAMPLED TEMPORAL CORRELATION FUNCTION

From these values, the totality of information, that can be computed

regarding the continuous TCF R(t,t) in (32), are the fwo sets of discrete

values
R(ma,2qa) = s(md + qa) s*(mA - q4) (392)
for integers
and mand q.
R ém + %)A. (29 + 1)4) = s(md + ga + &) s*(mA - q4) . (39b)

Thus both the t and < variables in R(t,t) are discretized, as indicated

in figure 4., However, observe that the available information is
interspersed in the t,x plane. Thus, for fixed t, the separation in
available t values is 24, not 4, whether t/a is integer or half-integer.
Similarly, for fixed v, the separation in available t values 1s a, not

4/2, whether </4 is an even or odd integer. This lack of intermediate
values in both s1ices 1is what has led (in the past) to incomplete processing
of the available information. What is needed to solve the aliasing problem
is a combination of 311 the interspersed information in figure 4 into a

single unified two~-dimensional description. That solution will be found to
reside in the SCF domain, v,f.

17
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. 3+ ® ° ®
° ¢ . )
° | =t ® L b
r Qy N 5 — t/2
° -l () ® °

Figure 4. Available Values of TCF R(t,r)

APPROXIMATE WIGNER DISTRIBUTION FUNCTION

Guided by definition (33), we adopt the following Trapezoidal
approximation to the continuous WOF W(t,f) at time t = ma, m integer:

Wy(ma,f) = “2 exp(-12vf2qa) R(ma,2q8)  for all f . (40)
q

Subscript a on wa denotes that it is only an approximation to the true
continuous W. Notice that the t increment in (40) {s 24, as it must be,
according to (39a) and figure 4; we are taking a vertical slice at t = ma in
figure 4. The approximation in (40) is always real. It utilizes only the
upper 1ine of information available in (39). Notice also that this function
is defined for all f.

However, there 1s an additional approximation to W(t,f) available at

time t = (m + %)A ., by use of the bottom 1ine of (39); namely, guided again
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by definition (33), we have Trapezoidal approximaticn

wa ((m + ]E)A,f) = ZAE exp[-i2nf (29 + 1)A] Rém + %)A, (2q + 1)9 for all f .
q
(41)

m is $til1l an integer. Again, the r increment is 24, but it is shifted by

4, as (39b) and figure 4 dictate. We are now taking a vertical slice at
t=(m+ %)A in figure 4; this is in keeping with the philosophy developed

earlier in (24)-(31). Approximation (41) is also real.

Equations (40) and (41) can be developed into some informative forms;

from (40) and (9), approximation

wa(mA.f) = j.dr exp(-12nft) R(mA,x) ZA:EE §(r - 2qA) =

q
f
= W(ma,f) @ Za(f - -2—2) -
q
- 2 Wima,f =) feran £, (42)

Similarly, (41) yields

waém + %)A'f) = J'd'r exp(-12nf<) R«m + %)0.1) 24 E §(t - 204 - A) =

q
TR q q
- me + -Z-)A,ae 2(-1) &(f - 'Z-A) =
q
ug(-uq N6m+32-)A. f-g3)  forall f . (43)

19
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The (-1)q factor is due to the time delay of A seconds in the impulse

train; more generally, for delay Tor

J‘dr exp(-12nfx) ZAE §(t -~ 2qa - 'ro) =
q
- - r SR D
exp( 12wf.o)Z §(f ZA)
q

n}exp(-iﬁuq v /8)  8(f - ﬁ) . (44)
q

The two relations, (42) and (43), are edu1va1ent to those given in
(4, (9)] and [6, (14)]. Observe that the aliasing lobes are separated by
only (2L\)‘1 in the frequency domain, not 1/4 as was the case for the signal
aliasing lobes in figure 2. These approximations, Wy, are t1lustrated in

tfigure 5, for two adjacent time {instants at ma and (m + %)A . We have used
property (38) in drawing figure 5.

In order for either approximation, by itself, to be free of aliasing, we

would need

I -
<zg-7 le,d<m. (45)

YR,

This relation, obtained directly from both plots in figure 5, is the usual
one quoted* regarding an alias-free WOF. It is seen to require a sampling
rate twice as fine as (17). If we satisfy (17), but not (45), then the

approximations in figue § are significantly aliased.

L
The case where s(t) is a real waveform is treated in appendix A.

20
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The two approximations, (40) and (41), use all the available information
(39) about the TCF R(t,<x) in the t,r plane. However, we cannot average

these two WDF approximations, in hopes of cancelling out the close-in lobes

centered at f = t(ZA)‘]. because the two times, ma and (m + %)A. are not
identical. (This timing observation is one reason for keeping A itseif in

all the equations, rather than setling A equai to 1 and losing track of the
meaning of m vs, m + %). Nor can we discard either one of approximations

(42) and (43), especially if criterion & < 1/F 1s closely met; the examples
in (24)-(31) amply demonstrate the rapid variation of the WOF with time t.

we see from (40) and (41) that approximations to the continuous WDF are
available at discrete time values with separation At ~ A/2 and at a

continuum of f values, Thus we have succeeded in c¢liminating the discrete

nature of one of the two initial time variables in the 1CF, namely r.

22
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APPROXIMATE SPECIRAL CORRFLATION FUNCTION VIA WOF

Guided by line 1 of definition (35), we adopt the following Trapezoidal
approximation to the original SCF A(v,f):

“gw)("'f) 2 % z exp<-12w 1‘-%) wa(ﬂ%,f) -
n

LS v S } exp(-izeo &) W (3,6)  for all w,f . (46)

even n odd

Notice that this function is defined on a continuum in v,f space. The
superscript w on approximation Aa denotes the fact that we have used the

WOF route to get into the v,f plane. The increment on t in (46) is Ay = A/2,
in keeping with the available WOF values in (40) and (41) together. This

(W), . o a(W) *
approximation satisfies the symmetry rule, Ay (=v,f) N (v,f) , Just as

for the original SCF A(v,f).

We Yet n = 2m in the first sum in (46), and let n = 2m + 1 in the second

sum. There follows, upon use of (42) and (43),

A;w)(u.f) = % :;Eexp(-12«uAm) wa(mA,f) +
m

+ %Zexp(-nmm(m + %» Na ((m + %)A.f) -
m

. %ZASexp(-‘\Zqum) W(ma, f - 53) +
q m

+ 32-2(-1)“ °§ exp[-12vva(m + 32-)] wém N %)A.f - 5%) . (47)
q m
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But

AZ exp(-i2wvam) W(ma,f') =

m
- Sdt exp(-12wvt) W(t,f') AZ §(t - ma) =
m
v
NYRIY DR
m
YR AN (48)
m

while

AZ exp(~12vva(m + %)] wém + %)A,f) .
m

= J.dt exp(-12nvt) W(t,f') AZ a(t - (m + %)19 -
m

ICRDY-HICILE TR X
m

> - ey (49)
m

24
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The use of these two relations in (47) yields the approximate SCF

R DD W UEL R (50a)
am
AEE b
qQ m
-5 ZA(u—m.f-?%) for all w,f . (51)
q n
g+m even

We now have a function defined on a two-dimensional continuum in the

two-frequency domain, v,f.

At this point, the reason for pursuing the use of g1l the available
information becomes obvious. A1l the close-in lobes that caused problems

have precisely cancelled in the SCF domain! Figure 6 depicts the regions in

the v,f plane where approximation Agw)(u.f) in (51) can be nonzero; see

also figure 3.

The SCF term in (50a) corresponds to use of only the information about
the TCF given in (39a), within a factor of 2, whereas (50b) arises from
(39b). Term (50a) by 1tself contains all the aliasing lobes centered at

veBf w4 with separations & = 1/8, 8, = (28)71; condition (17) is then
insufficient to prevent overlap, and (50a) is seriously aliased. A similar
situation exists for (50b) by 1tself. It is only the average of these two
pieces of information that succeeds in elimination of the troublesome
close-in aliasing lobes in v,f space. And 1t is only in this last domain,

where the functions are continuous in both variables, that this average can

be conducted.
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There will be no overlap of any of the remaining aliasing lobes in

figure 6 if we choose, as in (17),

A<;. (52)

Notice that we do pot have to require 4 < (2F)‘]. in order to avoid the
overlap. Furthermore, if we define the diamond gating function (see

figure 6)

I
] for |f + 2\ < A

D(v,f) = ' (53)
0 otherwise

then we can recover exactly the original SCF from approximation (51)

according to

A (0,8) D(v,f) = ACv, ) for all v,f , (54)

But recovery of A{v,f) 4s tantamount to recovering the exact continuous WDF,

since

W(t,f) = de exp(12mut) A(v,f)  Ffor all t,f . (55)

Thus, criterion (52) is sufficient to guarantee the possibility of getting

an alias-free WOF from discrete-time data.

Additional interpretations of (54) and a simple method of computing
approximation Agw)(u.f) are addressed in the next section, after we

have also looked at the route to the v,f plane by way of the CAF,

27
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APPROXIMATE CUMPLEX AMBIGUILTY FUNCILON

Based on definition (34), we utilize the Trapezoidal approximation to

the continuous CAF x(v,r) at delay r = 2qa, q integer:

xg(v,208) AE exp(-12wvam) R(ma,2qa) =
m

= j.dt exp(-12wvvt) R(t,2q4) AZ §(t - ma) =
m
v
- x(v,200) ® > 8(v -y
m

- EE x(v - %. 244) for all v , (56)
m

Notice that the t increment is 4, as 1t must be, according to (39a) and
figure 4; we are taking a horizontal slice at + = 2qA in figure 4.
However, there is an gdditional approximation available to the CAF, at

delay v = (2q + 1)a; again, referring to (34),

Xy (v,(?q + m) z AZ exp[-12mva(m + %)] Ry @m N 32-)A.<2q ; 1)19 .
m

. j‘dt exp(-12nut) R (t,(2q + 1)0) 8 > 6(t ~(m + ‘5)9 -
m

« x(s.(20 + 19) ® %_(-1)"‘ v-0 .

'Z(-J)m x(o - %. (2q + 1)A> for all v . (57)
m
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The t increment is again A, but it is shifted by A/2, in keeping with (39b)
and figure 4. We are now taking a horizontal slice at = = (2q + i)a in

figure 4. The (—1)m factor is explained by (44).

The aliasing lobes in (56) and (57) are separated only by a, = 1/4 and
will overlap on the v axis unless A < (2F)'1; see (38) and figure 7. Thus,
the approximate CAF, xa(o.nA) for n integer, suffers overlap due to
aliasing, just as the WDF, wa(% A, f) for n integer, does; elimination
of overlap 55 achieved only if the stringent requirement A < (2F)~] is met.
Furthermore, again, we cannot directly average the two results in figure 7,
in hopes of canceling the close-in lobes centered at v = £ 1/4, because the

two delays, 2q4 and (29 + 1)4, are not identical,

Equations (56) and (57), together, 11lustrate that approximations to the

continuous CAF are available at discrete delay values with separation AT * A
and at a continuum of v values, Now we have succeeded in e11m1nating the
discrete nature of the other of the two initial time variables in the TCF,
namely t. The remaining Fourier transform into the SCF domain will

eliminate the other discrete variable,.
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APPROXIMAITE SPECTRAL CORRELATLON FUNCTION VIA CAF

Guided by 1ine 2 of definition (35), we obtain the following
approximation to the original SCF A(v,f):

A (v,f) 2 8 2 exp(~120fna) x,(v,n) =
n

= 4 {Z + Z.} exp(-i2wfna) xa(u.nA) for all v,f . (58)
n d '

even n od

The superscript ¢ on approximation A, denotes that we are obtaining this
result by way of the CAF. The increment on r in (58) is a, = a, in

keeping with the available CAF values in (56) and (57) together.

Let n = 2q in the first sum in (58), and let n = 2q + 1 in the second

sum. There follows, upon use of (56) and (57),

Agc)(v.f) . “Z exp(-12nfa2q) x,(v,2q8) +
q

+ Az exp[-12rfa(2q + 1)] xa<v.(2q + 1)4) .
q

-Z_A z exp(-12wxfa2q) x( - %‘. 2qA> +
m q

+Z(-1)m AZ exp[ 12xfa(2q + 1)) x(: - [E. (29 + 1)A> . (59)
m q
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But

AE exp(-127fA2q) x(v',2q4) =

q
- S.dr exp(~120f1) x(v',1) Az St - 2q8) =
q
Dl q
- A ) BF 8 - 5 -
q
-1 ZA(»'.f -5 (60)
q

while

AZ exp[-12nfa(2q + 1)] x (o', (2q + 1)&) .
q
- jdr exp(-12nfz) x(v',1) Azéé - (2q + 1)A) =
q .

) .
= AGv',f) @1 S (-1 8(f - 5D =
q

F DIC I NI (61).
q

The use of these two reiaf1ons in (59) yields the approximate SCF
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Al = 1 zz Av -3, f -0y .
mq

3 22 ™ Ao -
m q

R m
- % % aw -0 ooy forall w,f (62)
m+q even

But this result is identical to the approximate SCF Agw)(v.f) given
in (51) and figure 6. That is, we obtain the same continuous approximation
in the v,f domain, whether we approach it via the WOF or the CAF., This
apparently fortuitous result {is due to the fact that we used al, the
available information about the TCF when we started with (39), and kept all
of it in passage through the WOF or CAF domains.

Figure 6 is again applicable, and we now see that we can drop
superscripts w and ¢ from (51) and (62), respectively, since there is only
one approximation in the 3CF domain. (The comments following (51) are also

directly applicable here.)

A rigorous proof of the equality of the two approximations available for
the SCF 1s given in appendix 8. It utilizes an impulsive sampling approach,
similar to (9) but in two dimensions, and can be considered as an alternative
to the approximation approach developed in this section. Of <course, the end

result for the SCF in the v,f domain {is again (51) or (62) or figure 6.

KK)
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SUMMARY STATUS IN ALL FOUR DOMAINS

The results for the approximations to the TCF, WDF, CAF, and SCF are
sketched in figure 8. These plots are a rondensation of the exact
analytical results given bv (39), (42) & (43), (56) e (57), and (51) £ (62),
respectively. For example, the approximate WDF in the lower left of figure B
is available only alon~ t*m slices where t = nA/2, n integer. Along these
s1ices, the aliasi ' lobes (in frequency) alternate in polarity if n is odd,

but remain positive for n even. (Positive lobes are drawn toward the right
side in the figure).

Horizuntal movement from one diagram to another in figure 8 is

accomplished by a Fourier transform from t to v (or vice versa). '

vertical movement is according to a Fourier pair relating - and f.

Finally, the diagonal connection between Ra and Aa' or between wa and

Xq 1s by means of a double Fourier transform.

34
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RECOVERY OF ORIGINAL CONTINUOUS TWO -DIMENSIONAL FUNCTIONS

We have seen, by means of (52)-(54) and figure 6, that the original SCF

can be recovered from the approximate SCF

Ag(v,f) = ‘2'_ Z A =0 f -5 forattw,f (63)
q m

q+m even

by means of the diamond gating function D(v,f) in (53), provided that

4 < 1/F, We have used (5i) and (62) here, and dropped the superscripts in
accordance with the discussion following (62). This means that we have the
possibility of evaluating the original continuous TCF R(t,r), WOF W(t,f),

and CAF x(v,t) at any argument values we please.

SIMPLIFICATION OF SCF A,(v,f)

It would be an extremely tedious task to evaluate the approximate SCF
Aa directly by its definition (46) coupled with (40) and (41), which, in
turn, are based upon starting information (3¢). 1In fact, there is a

startingly simple way of computing Aa'

Recall from (16) that spectrum

3(f) = A z exp(-12¢fak) s(ka) =
K

-z scf - & forarnf (64)
K
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Therefore

U BT .:EijE:S(f % R R B
1

.%g A( Shs b L BER) a0 (65)

where we used (35). Now let m=Kk - % and ¢ = k + %; then

m—%—“ -k, g—i—m = § , meaning that m + q must always be even. Therefore,
(65) can be expressed as ' -

- o
S(F + %) S(f - g) - :EE :EZ A(v - ?, f - 5%) for a1l v,f . (66)
Qa m

g+m even

But (66) 1s identical with (63)! Thus we have the compact result for the
approximate SCF

Ay(v,1) = 3(F + 1) - ) for all v,f, (67)

where

3(F) = A:E: exp(-12rfak) s(ka) for all f , (68)
Kk

in terms of the original time samples {s(knﬂ .

It is convenient at this point to define, for all f, the function

A? exp(-12efak) s(ka)  for [f| < 5%

S(F) = S(F) rect(af) = , (69)
0 otherwise
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which can be computed directly from the samples {s(ka)} . Then since

A < 1/F, reference to figure 2 and (18) reveals that
§(f) = S(f) for all f . (70)

The only reason for distinguishing betwsen S and S is that we think of § as
being computed directly from samples {;(kAﬂ via (69), whereas we think of §
as being computed from s(t) via Fourier transform (13). Strictly, since S(f)
is bandlimited to t F/2, S(f) in (69) only needs to be computed in that .

somewhat smaller range of f.

At this peint, we refer back fo (52)-(54) and figure 6 to find that

A(vif) = Ag(u,f) D(u,f) = S(F + ) 8 (F = %) forall o,f,  (71)

since only the origin lobe in figure 6 can contribute, and there is no

overlap. Thus we have a very direct way of recovering the original SCF from
the time data samples: compute S(f) from (69), and then A(v,f) from (71).
A1l these results are predicated on sampling rate condition A < 1/F; they do

not require 4 < (2F)'1.

If we substitute (70) in (71), we hive original definition (35). Thus we
have come full circle on the SCF, returaing with an obvious relation. This
indicates that a shortcut could have bean taken with regard to getting the
key result (67). We have pursued the longer route because it indicates what
the complete set of fundamental procesing equations are, and 1t clarifies a

number of points that have been under :ontention in the 1iterature.
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RECOVERY OF ORLGINAL WDF AND CAF

From (37) and (71), we obtain the original continuous WOF as

Wit ) = [do exp(tamt) 3(F + %) 85(F = %) for all 1,1, (72)

where 3(f) 1s given by (69) in terms of samples {s(ka)}. The truncation of
¥(f) at £ = + (28)") 4n (69) is what prevents all the distant sidelobes of

Aa(o.f) from contributing., We could hardly have expected a simpler result.

From (37) and (71), we also obtain the original CAF according to -

x(v,7) = j'af exp(12ef1) §(F + 3) §°(F - %) for a1l v,r . (73)

Thus, both the WOF and the CAF can be recovered by single Fourier transforms

of the same product function, but on complementary variables v and f,
respectively.

RECOVERY OF ORIGINAL TCF

L

Probably the best way to recover the original TCF R(t,t) 1s by means
of a combination of (32), (5), and (70):

R(t,®) = s(t + ) (- h, (74)
with

$(t) = J‘df exp(12nft) S(f) . (75)

A11 the above procedures employ S(f) and a Fourier transform in some

fashion. The quantity S(f) can be computed at any f of interest, directly

from samples {s(kaﬁ , by means of (69).
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DIRECT TIME DOMAIN RECOVERY OF CONTLNUOUS WOF

We have given two alternatives for the recovery of continuous time
waveform s(t) from samples fs(kA)}. They are (21) or (75)4L(69). 1If we
employ the former in the time definition of the original WOF (1ine 1 of
(26)), we find, for all t,f,

u(t,f) = [ ar exp(-t2efn) st + ) s"t - P

-4 :i ZE exp[-12efa(k - 2)] s(ka) s¥(2a) WGt -2 e, e
K%

where

- . -J-
w78 for |f] < 7,

Wy(t,f) = for all t . (77)
0 for |f| > ;%

This result 1s equivalent to [5, (5)4(6)]. However, as noted there, this
alternative for the WOF is not computationally attractive, although (76) is
certainly alias-free hecause it is restoring W(t,f) 1tself, and not some

approximation to it.

As an aside, 1f the frequency domain version of the WOF is used instead

(14ne 2 of (26)), and 1f (21) is immediately transformed into the frequency

domain, we get directly
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S(f) = S(f) rect(af) = S(f) , (18)

in complete agreement with (72).

In the seque) to (62), 1t was mentioned that an alternative approach
fnvoiving impulsive sampling could be used to get various impulsive
two~dimensional functions from samples {}(kAi}. In a similar vein, the
continuous two-dimensional functions can be recovered by direct convolution
(interpolation) in the domain(s) of interest, These alternative forms are
not as numerically useful as the ones presented above, and so are deferred
to appendix C. However, Some useful insight into the inadequacy of some
past attempts at interpolation is gained by this alternative viewpoint, and
the readers attention is directed to those results.

DISCUSSION

In retrospect, (72) and (69) are an obvious result., We know that the

original continuous WOF is given by (1ine 2 of (26))
W(t,f) = S.d» exp(i2rvt) S(f + g) s*(f - g) for all t,f . (19)

So 1f we can get S(f) exactly from samples {s(khﬂ'. in some (any) fashion,
we can get W via (79). But, in fact, S(f) in (69) s identically equal to
S(f) for a11 f, when &4 < 1/F. Condition A < ('JF)"1 1s patently unnecessary

and too restrictive. A similar comment holds with regard to the CAF.
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Given samples {s(kAi}. the function 3(f) in (69) can be computed at any"

desired f values of interest. Therefore the product
S(¢f+ %) §7(F - B (80)

required in (72) and (73) can be computed at any v,f values needed, and the
integrals for W(t,f) and x(v,v) evaluated very accurately at any

arguments of interest.

This is the major difference relative to the TCF R(t,x), (74), which
could only be calculated at interspersed points in the t,r plane from the
available data; see (39) and figure 4, Str1ét1y. waveform s(t) could be
interpolated, and then TCF R(t,x) filled in at the intermediate points of
interest in figure 4, This viable alternative requires just slightly more
calculations that the frequency domain approach given above; we will discuss

and compare hoth alternatives in a later zection.

In practice, S(f) wil) only be calculated at a discrete set of
frequencies, in order to economize on computational effort, We then find
that the product function (80) 1s available at interspersed points in the
v,f plane in an identical manner to that for TCF R(t,t) in fiqure 4,

In fact, 1f S(f) 1s computed only for f/a, = integer, then (80) is

available only at

f/Af = {nteger , u/Af = aven integer (81)

and at
f/Af = odd integer/2 , u/Af = odd integer . (82)

Just as this type of interspersed sampling required a finer sampling interval

in the time domain (see figure 5 and (45)), so also is a finer increment

required here in the frequency domain. Namely, we must heve
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(83)

in order to avoid aliasing in the ¢ domain of the reconstructed WOF via
Fourier transform (72). The same requirement holds for aliasing control in
the + domain of the reconstructed CAF via (73). Here, T is the overall

effective duration of waveform s(t):

st &0 for Jtf > 1r2. (84)

See figure 9. (The waveform can be centered at t = 0 without loss of
generality, merely by time delaying 1t.) However, there is a very convanient
and efficient way to meet requirement (83), as will be shown shortly, whereas
requirement (45), 4 < (2F)'1. 1s very unattractive, at least through direct

sampling of time domain waveform s(t).

Since the total extent of the spectrum S(f) 1s F Hz (see {14) and
figure 1), waveform s(t) cannot be strictly time-limited. However, we
assume that a finite T value can be found for figure 9 such that
approximation (84) is a good one. Strictly, (84) sheuld read

AW ey for [t > /2

max Js(t)]

Js@] &

o

Figure 9. Waveform s(t)
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DISCRETE PROCESSING IN FREQUENCY DOMAIN

Thus far, we have not discretized in the frequency domain; both v and f

have been allowed to take on continuous values, So we have, from (69),

§(F) = 42 exp(-12efak) s(ka)  for |f| <t . -~ (86)
K
Now, suppose that we only evaluate 5(f) at a set of discrete frequencies,

according to
3(30) = Az oxp(-12vnk/N) s(ka)  for |n| < g : (87)
3
Since the sum on the right-hand side of (87) has period N in n, we can

evaluate it quickly via a collapsed N-point FFT; see (10)=(12). The

negative n values desired in (87) are easily accommodated by means of 4
modulo N look-up in the FFT output.

EVALUATION OF WDF

The increment in argument f of 3(f) 4n (87) is
o -l
B = g - (88)

In order to use these results in approximating integral (72) for the WDF,
Nt f) = fau sxp(i2nut) S(f + 3 55 - B (89)

we need to have the increment in v satisfy (due to the v/2 arguments)

44
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1 - -4
20, " Ve B =R (90)

So if we 1imit v in (89) to the values ﬁ% , one possible Trapezoidal

approximation to W is

ft,f) 3 ;,-fz exp( 12w ﬁ-’; ) §Fegdy T -gh forani g f L (o)
%

This function 1s defined on a continuum in time,frequency space. But this

can be developed according to

W(t,f) = I‘dv exp(i2wvt) S(F + %) §*(f - %) N% :E §(v - ﬁ%) -
()

t
- WL ) B S 5t - 8 Ng) -
')
-Zw(t - M foran thr, (92)
X

where we used (72).

Since waveform s(t) is approximately 1imited to |t| < T/2 (see (84) and
figure 9), then WDOF W(t,f) is also approximately 1imited to Itl < T/2, as

may be seen from 1ine 1 of (26). The approximation (92) then appears as in

figure 10. ﬂ&/&t;f>
!

nlia&'mg
loba

Figure 10. Time-Aliased WOF
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In order that approximate WOF W not suffer significant overlap in time,

we see that we need

3 <

PO

. e, N> A (93)

The FFT size, N, in (B7) must be at least twice as large as the number of
samples, T/a, taken of waveform s(t). Recalling (88), this inequality

becomes

%‘ﬁ‘ﬁ' (94)

consistent with (83), as predicted. Thus, approximation W(t.f) is an
extremely good approximation to W(t,f) for ]t\ < T/2 1f FFT size N satisfies
(93). The goodness of W depends critically on the degree of saiisfaction of
(85).

More generally, we could 1imit the v values in (89) to

v v, * N Y arbitrary (A" - i%) , (95)

getting alternative approximation

Wa(t.f) = Idu exp(12ntv) S(f + %) §"(f - %) NZA'Z $(v - v, - %%) -
1)

t
= Wit,f)@ exp(12«tv°)Zs<c -9 ﬂ%)} -
L

-S Wit -2 u'g. f) exp(1«u°NA!.) for all t,f . (96)
)
The plot for lﬁ;(t.f)l is identical to that of IW(t.f)l in figure 10, since
the magnitude of phase factor exp(1wuoNAl) is 1 for all &. The main lobe,
L =0, {s unaffected by the choice of vy So criterion (93) is again

sufficient to avoid time-aliasing in ﬁa. regardless of shift vy

46
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DISCRETLZATION IN TIME AND FREQUENCY

For convenience, we therefore return to W in (91) and get, in particular,

the values

A(td) = (25 exp(tar &k ¢y §(Rtd) §7(As for all t , (97)

where we must choose frequency f = ﬁ% , in order to use the available

samples of S in (87). We now further choose time

t-%% (98)

and get the approximation in the form

W4 :'NA) -—3 :E exp(12mma/M) §(-Ek) §hhot %) (99)
.

The reason for this choice of t values is that this sum can be accomplished
as & collapsed M-point FFT as described in (10)~(12). The range of values

that must be covered is

N T IM
J.m%A.ﬁ<.§ , 1.8-. Iml(z-ﬁ (100)
and
N
BoE, ot nl<rad. (101)

Coincidentally, this identical procedure above has already been derived
by the author {in {9, (A-13)8(A-14)]. However, it was done, at that time, to

generate slices in time of the WOF, without realizing that the procedure »iso

had an alias-elimination feature. Requirement (93) was [9, (A-5)d(A-6)7.
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INCREMENTS IN t AWND ¢
The increments in t and f in approximation ﬁkt,f) in (99) are

AN 1
b, =5y and  Ag = e (102)

Since the'or1q1né1 WOF 1s given by

N(t.f) - j~d1 exp(-~12«frx) R(t.f) s .A (103)

and the effective extent of R(t,r) 1n t 1s 2T for the waveform s(t)

satisfying (84). then we must require

_1 sl
B <37 e, N> (104)

in order to track the variation of W(t,f) in f. (See appendix A.) However,

this was a condition already encounterad in (93).

Furthermore, since we have the alternative Fourier transform
W(t,f) = j'du exp(12evt) A(v,f) , (105)

and the extent of A(v,f) in v 1s tF, then we must also have

A<"l

1M
TR j.e., & < EN (106)

in order to track W(t,f) variations in t. Now if we choose M smailer than N,
say M = N/2, then we obtain condition A < (ZF)'w. But this is a finer time
sampling increment than required. Also (102) gives by = 4, which does not
track W(t,f) adequately in time; see (24)-(31). Conversely, i1f we choose M

larger than N, say M = 2N, then we get A < 2/F, which is already accommodated

by the earlier requirement
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4 < 1/F. And AT = A/4, which is overly fine in time. 30, in order to

minimize the range of m values needed for investigation, we choose
M=N. (107)

Notice that the time increment a, in (102) for R(t,7) 1s then 8, = 8/2,
not the A that was sufficient for sampling s(t). This 1s consistent with
‘the fact that W(t,f) can be sharper in t than s(t).

(I

SUMMARY OF WDF EQUATIONS C : ' 5

Here we summarize thb'ﬁﬁjor assumptions and requirements and 1ist the

major equations by which the approximate WOF ¥ can be computed,

Assumptions: |
| S(f) =0  for |f] > Fr2,

Is(t) &0 for [t] > 172, ‘ (108)

This 1s no loss of generality, since the waveform can be time delayed and

frequency shifted as desired.

Requirements:

ael,

N> & (s oamR) (109)
Equations:

22 exp(-12ek/N) s(ka)  for |n| <&
K

. (110)

0 otherwise
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~ 2 o L. = - 9
w(m§.~%) = e 2 exp(12um/N) 5L ;A-) 5 (D )
%
for |m| <'£ v n] < % Fa . (111)

Gperation (110) can be accomplished by a single N-point FFT with
collapsing, while (111) requires an N-point FFT for each n value of interest.

The latter N-point FFT (for a given n) will sweep out N values of integer m;

| this will cover a total time range of N % >T , as desired. The total number
of n (frequency) values to be searched is NFA, Values of W for negative

vg1ues~of.m are available in location m module N of the FFT output,

For the most advantageous choices of

amt, Neaor, (112)

we have ranges

Iml < TF,  In| <TF .,
EVALUATION OF CAF
The equations for calculation of the CAF, from discretized frequency

samples of S(f), are very similar to those given above for the WOF,

Accordingly, they are deferred to appendix 0.

50
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INTERPOLATION OF TIME WAVEFORM

It was mentioned in the sequel to (80) that available data samples
{s(ka)} could be interpolated in time, to Fi11 4n the vacant spots of TCF
R(t,t) 1n fﬁguré 4, One procedure to accomplish this is by direct use of
sinc-function interpoiation in (21). However, a more efficient procedure is

Ly use of FFTs.

From (22), we can get samples of the approximate spectrum according to

St A% exp(-12emk/M} s(ka)  for |m| < 8, (113)

which can be accomplished by an M-point FFT. The frequency increment is
be = (MA)". The original continuous time waveform is

S(t) = J‘df exp(ienft) S(f) w

(20)7"

- g df exp(i2wft) S(f) =

~(28)7"
M/2
S ,2 exp(t2x g t) 3(D) -
m=-M/2
3 T(t) forallt, (118)

51
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where we have utilized the fact that 4 < 1/F. (The tic mark on the summation
symbol indicates that the summand values at m = tM/2 must be scaled by 1/2,)

But approximation §(t) can be developed in the form

A
T M/2
§(t) = Sdf exp(i2eft) $(F) gt Z 8f - g =
- m=-M/2
T

- S.df exp(12eft) S(f) M—‘AZ 8(F - 5
m

s(t)OZ &(t - mMa) -Z s(t - mMA)  for all t . (115)
m m

This aliased function is 11lustrated in figure 11.

30
|

j\ ]\’&)
M % o 1

aliasi
loL::S

M- Ma

Figure 11, Time-Aliased Waveform ?(t)
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In order to avoid time overlap in figure 11, we must have
(R ST (O (116)

If this FFT size requirement for (113) is met, then figure 11 reveals that

1) Ss(ty for Jt] < B (117)
that is, we can expect that 9(t) is a good approximation to s(t).

In particular, if we want to interpolate samples {s(kAﬂ by a factor of

2, we have, from (117) and (114),

M/2
s(M4) = 58 « ,—d- Z exp(iae D) S(cly  for o] <M. (118)
me-M/2

This can be done by a 2M~-point FFT with zero-fi11, and-{§(ﬁ%) M;:e made

available by the M-point FET in (173), The two requirements that

must be met are

A < f,—. M > 3% (> 2TF) . (119)

This 1s the procedure utilized in [8].

53
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DISCUSSION/SUMMARY

We have two alternatives for computing an alias-free WOF and CAF., The

requirements that must be met are

aci My L

:, L, veaws>, (120)

The processing eduat1ons are summarized below,

TIME DOMAIN APPROACH

D) - AZ exp(-12nmk/M) s(ka)  for |m| < § (121)
W2 )
m = exp(izam/N) Sl for o] < u
m=-M/2
>
(M) - Qe
0  otherwise J

M, ) = 8> exp(-t2enan) S 2y §"(Rg-k )
!

for [n| <X, o] <Br<d, (123)

In the last equation, we obtain s1ices of the WOF in frequency (n) at fixed
time (m). (This result is in essential agreement with [7, (77) and (74)];

however, we are not restricted here to T = MA.)

54
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FREQUENCY DOMALN APPROACH .

A%exp(d%nk/N) s(ka)  for |nf <8,

§(zD) = , (126)

0 otherwise

A0, )« R S ep(izemn) §(-th 5 (=

for Inj <<l o] <Hra. (125)

Here, we obtain slices of the WOF 1in time (m) &t fixed frequency (n). (This

result is in essential agreement with (7, (81)]; howaver, we are not
restricted here to 2T = Na.)

COMPARISON

since waveform s(t) = 0 for |t| > T/2, the sum on k 4n (121) can be

confined to |k} « 5{ <5 = % , While the sum on k ‘n (124) can similarly be

N

¢

. . |
confined to lk[ <3 <4

‘‘he time domain approach requires cne M-point (M = N/2) FF1, one N-point
FET, and then an N-point FFT for each time index m of interest., The
frequency domain approach requires one N-point FFT and then an N-point FF1

for euch frequency index n of interest. Thus, the time domain approach

requires one additional M = g - point FFT, which 13 a negligible difference,
compared with the multiple FFTs that must be performed for (123) or (125).

The major difference batween the two approaches appears to be whether one

wants slices in frequency, or slices in time, of the WDF.
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It should be emphasized that the procedure here reconstructs the
original WOF of the continuous waveform s(t), at any time,frequency (t,f)
arguments of interest, from the samples {s(ka)] . There is no need to define
or set up some arbitrary discrete form of the WOF. The discretization of
the t,f arguments of the WOFs is undertaken only afier this reconstruction
procedure has been delineated (via the v,f plane) and the sufficisancy of
sampling requirement & < 1/F established, Of cuurse, this evontual
discretization in time/frequency 1s necessary in order to reduce the general
procedure to a practical efficient algorithm. A similar set of arguments

applies equally well to the reconstruction of the CAF,

An alternative philosophy, to developing Trapezoidal approximations for:
the various two-dimensional functions, 1s given in appendix B in terms of a

pair of interspersed impulsive trains in the t,x plane. The end result
for the approximate SCF in the v,f plane 1s shown to be identical to that

ocbtained earlier.

The connection of this two-dimensional impulse train with direct timel
domain sampling of the waveform s(t) is considered in appendix E. Again,
the two approaches, time domain sampling versus t,t domain sampliing, are
shown to yield the same result. Finally, the fundamental rules and patterns

relating two-dimensional interspersed infinite sampliing trains are displayed

at the end of appendix E.
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APPENDIX A. EXTENTS AND RATES OF VARIATION
OF TCF, WDF, CAF, SCF

From (5), we have Fourier pair

S(f) = S'dt oxp(-12eft) s(t) ,

s(t) = S'df exp(12eft) S(F) ; (A-1)
and from figures 1 and 2, we know that {f
s(f) =0 ftor [t] > Fr2, (A=2)

then samples (4&At$} are sufficient for reconstruction of s(t) 1f &, < 1/F,
That is, 1f a spectrum is bandlimited in the frequency domain to total

extent F Hz, samples of the corresponding time function must be taken with
time increment Ay < 1/F, in order not to lose any significant information.

In a similar vein, the duality of the equations in (A-1) indicates that
1f, instead,
s(t) =0  for |t] > T1/2, (A-3)

then spectrum samples ES(nAfi}are sufficient for reconstruction of S(f) if

frequency incremant ag < /7. ;

The general rule, here, is that 1f a function in one domain is
essentially limited to overall extent £, samples in its Fourier transform

domain must be taken finer than 1/E, in order not to lose any informstion.

This rule will be used frequently below.
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EXTENTS OF TCF, WDF, CAF, AND SCF

Henceforth, we assume that
s(fym 0 for |Fl > Fr2
and

s(t)xg 0 for Jt] > T/2., (A-4)

Thus, the overall frequency and time extents are approximately F Hz and T

seconds, respectively, It then readily follows from (32)-(38), namely,

RE = st D st -3, (A-5)
Av,F) = S(F + B ST(F - (A<6)
W(t,f) = (v exp(-t2nfe) R(t,) » (A=7)
. yd» exp(12evt) A(v,f) , (a8

a(v,1) = 't exp(-12avt) R(t, ) = (A-9)
. Sdf oxp(i2efr) A(v,f) (A-10)

that the extents of these functions are as depicted in figure A-1. The solid

curves depict the contour level within which the function {is essentially

2
concentrated. In fact, for Gaussian waveform s(t) = a exp(- ;ma). the
(-]

choices T = 4o, F = ;5 , for example, give these exact results in figure A-1,

at the exp(-4) = ,018 lavel.
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> d
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-3
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N

Figure A-1, Extents of the Two-Dimensional Functions
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RATES OF VARLATION

We now combine the sampling rule deduced under (A-3) with the extents in

figure A-1. From (A-7) and (A-8), we must have sampling increments (i.e.,

spacings of argument values on left-hand side) satisfy
-1
8¢ <37
“t‘ﬁ-r

From (A-9) and (A-10), we need

to adequately track WOF .

to track CAF .

4 <
<

=4
<
A
n

By inverting (A-7)~(A-10), we express

R(t,v) = S'uf exp(i2vft) W(t,f) =
- S.du exp{i2wvt) x(v,t) ,
A(v,f) = j.dt exp(-12wvt) W(t,f) =

= J’dt exp(-12nfr) x(v,t) .

Thery follows from (A-13) and (A-14), that we need

[ -4
A
-n

to track TCF ,

(A-11)

(A=12)

(A-13)

(A-14)

(A-15)

(A-16)

(A-17)
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while from (A-15) and (A-16),

to track SCF . (A-18)

=

Af<

These last four restrictions are identical to those given in (A-11) and
(A-12). The total number of sampies required to completely describe any one

of the four two-dimensional charactertizations is T2F2.

SAMPLING RATE FOR REAL WAVEFORM

Requirement (17) on the time sampling increment, & < 1/F, for recovery of
the time waveform s(t). is based upon figures 1 and 2 for a complex envelope
waveform s(t). 1f s(t) were, instead, a real waveform 51(t). the earlier
development covers this case as well, but with a change in natation. The
spectrum S](f) of waveform s](t) is symmetric about f = 0, as depicted in
figure A-2. F 1s now the total frequency extent of the positive-frequency

components of s1(t).

We now have frequency limit

F
1. £ -
> fc *3 (A-19)

and the stringent requirement (45), for an unaliased WOF, becomes

1 1
N T (A-20)

a

For a narrowband waveform, fc >> F, this requires an unnecessarily high

sampling rate, compared to what would be required for the waveform

A-5
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corresponding to single-sided bandwidth F. Extraction of the complex

envelope (or analytic function) of s1(t) would return us to WOF requirement

A< 5% , as in (45). This pre-processing feature is recommended for all real
waveforms., However, we also want to avaid this more stringent WDF

requirement and be subject only to the & < 1/F limitation.

3 [S#)

Figure A-2. Spectrum of Real Waveform
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APPENDIX B. [IMPULSIVE SAMPLING APPROACH

Instead of trying to develop Trapezoidal approximations to the WOF, CAF,
| and SCF 1ntegrais from the available 1n§ormat10n about the TCF 1n (39}. we
adopt here the philosophy thét continuous TCF R(t,r) has had a pair of
impulsive trains appiied to 1t, ylelding the impulsive approx1mation

Ri(t.r) ] A2 R(t.v)[ﬁi $(t - mA):S §(v - 2q4) +
m q
‘+2 6(1:-(m+%)92 GG -(2q+1)A>:I -
m q

=~ a2 R(t,1) % é &t - ﬂg) §(tr - 14) =

n+% even

- a? ZE R(M.00) st - By e - 00) . (B-1)
no%

n+L even

That is, a couple of two-dimensional impulse trains, interspersed in the
t,t plane, have been applied, so as to use all the available information
in (39). This 1s identical to the result for the TCF of impulsive time
waveform s1(t). obtained by multiplying s(t) by a sampling train; see
appendix E.

We now define the corresponding WOF, CAF, and SCF as rigorous Fourier

transforms of (B-1), using the standard forms, for all argument values,
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Wy (t,f) = fd-. exp(-12nfr) Ry(t,a)

xy(v,1) = j'dt exp( ~12rut) R1(£.1)

Ay(v.f) = Idt exp(-42aut) Wy (t.F)

- Sdr“l‘xb.(-‘lz-uff) x.'(p.r)

- [[ ot te wpcetzmt - t2etey Ryt . (8D

These gxact interrelationships indicate that the same SCF .A1 will result
from TC Ry, whether we procesd by way of the WDF or the CAF. -

We have, in detail, WOF

Wy(t,f) = yd't exp(-12«f-r)v §1(t,’1) .
. J‘; Az &t - m) de .xpwzqf;) R(t,*) ZAS al(, - 2q0) + |
m q
* 32- AE é@ = (m + %)A} de exp(-12rfe) R(t,r) 2A§ 5(., - (2q + 1);) »
" q
=14 st - ma Wt @3 s(f - ) »
m g
'3 ‘E ‘6 L J;N) W(e,f) éz (-1 8(F - 5 =
m q

-} e at - ma) D (L, f - gl
m q

1 a% 8t - (n+ %@é(-n“ Wt - 5D - (8-3)
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=

-«
JZ-AZ $(t - mA)z W(ma,f - —z-g) +
m q

+%Az 66: - (m+ ]Z-M)QZ (--'l)q w@n +-,})A.f - -5%)-
m .
“1a> st - ) ugma,t) + 38 > s - (s %)a) wy ((n + Jz-u,f) -
m m

A3 e - M u (8-4)
n

using (42) and (43), Thus, the areas of the impulses in w1 are equal to
the approximations N. developed in (42) and (43), within a scale factor of
A/2,

Continuing on, from (B-3), the SCF is

A.‘(u.f) -‘(‘dt exp(-12wvt) N1(t,f) -

- %Zj'dt exp(-12mut) W(t,f = 5d) AZ 8(t - ma) +
q m

+ %Z(-nqut exp(-12wut) W(t,f - -2-%) Az é<t - (m+ :1,-)6> =
q m
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I A - @S s -
q m

v
D ICIANTCREE Y- PIC LIRS I
q m

PP R A
g m

- Z Z Alv - 12,' f - 5—%) for all v,f . (8-5)

Thus, the SCF Ay, resulting from the impulsive sampling approach applied
to the TCF, 1s not impulsive at all in the v,f plane, and is identical with

the approximations Aa developed in (51) and (62).

Proceeding instead via the CAF, we have

x.'(u.t) = fdt exp(~12wvvt) R.‘(t.r) -

- AZ&(f - 2q4) jldt exp(-12rvt) R(t,r) A Z §(t - ma) +
q m

' AE 6(1 - (2q + m) ydt exp(-12nvt) R(t,t) a§a(t - (m + 12-);9 -
q m
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- AE §(r - 2q4) x(v.t)ég 8y - %1) +
q m

N AE 6(1 - (2q + 1)A> x(vﬂ)ﬂuz("”m v - -
q m

| =23 a2 S av -0
q m
uza(f-(zqnn)?_(-n’“ av =0, 0w (8-6)
q m
‘ -AZ é(t-ZQA)Z x( -%‘. 2qA)+
q m

+Az 6(1' - (2q + 1),9 2_(-1)"‘ XG -‘2. (2q + 1)9 .
m

q

- Azé(t - 2qa) xa(u.ZqA) + Azé(r - (2q + 'l)A) xa<v.(2q + 1)A> -
q q

- Az §(x - nd) xa(u.nA) ) (8-7)
n

via (56) and (57). Thus, the areas of the impulses in Xy are equal to

the approximations X in (56) and (57), within a scale factor of a.
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Now strictly speaking, there is no need to proceed to SCF A1 via the
CAF Xy since (B-2) shows that there is only one A1 function, regardless
of how reached. Nevertheless, for completeness, we also present the last

route, We have, using (B-6),

Aq(v,f) = fd\‘ exp(~12rf1) X (v,7) =

-1 Efd‘t exp(-12vf1) x(v = D,x) 2424(1 - 2qa) + .
m q

' ;-2'(-1)'“J'm- oxp(-12efe) x(v - Do) 203 46 - (20 + 1)0) =
m q

f
IS A -Ln@ st -5 ¢
m q

f
+ 32N A - 1@ 3 (1) 4 - 5
m q

RPRIUEN RS EE DD ICULSUEL RS
m q m q

- % Zq A =0 0 -5y forant ut (8-8)
m+q even

As anticipated, this 1s identical with (B-5). Thus we get a unique SCF in

the v,f plane.
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APPENDLX C. RECOVERY VIA DIRECT CONVOLUTION

This appendix 1s closely coupled with the previous one; it shows how to

recover the original continuous two-dimensional TCF, CAF, and WDF from their
impulsive counterparts. From (B-5), (B-8), (51), (62), (53), (54), and
figure 6, the original SCF is

A(v,f) = A.‘(”of) D(v,f) . (C-1)

WDF RECOVERY
We have, using (B-4),

W(t,f) = J‘du exp(12eut) Ay(v,f) D(v,f) =
£
- Wy (4,F) @ d(t, 1) =

= :EE wa(ﬂﬂ.f) % d(t - n%.f) for all t,f , | (C-2)
n

where

% d(t,f) = % Jﬂdu exp(i2wvt) O(v,f) =

sin[2r %(1 - 2alf]))

for |f] <
an % °r l l E%
- for all t
0 for |f] > 5
= (1 -~ 28]|f]) s1nc[2 {‘(1 ~ ZAlf\)] rect{af) . (C-3)
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These results agree with (6, (27)4£(28)]. Interpolation rule (C-2) uses the
avallable slices of information in the t,f plane of figure 8. A particular

case of (C~3) is

84(0,8) = (1 - 28 )f]) rect(af) . (C-4)
CAF RECOVERY
From (C-1) and (B-7), there follows
x(v,7) = fdf exp(12eft) Ay(v,f) O(v,f) =
- xy (o) @ dlvm) =

.Z "a(‘""" A&(u.r - nd) for all v,t , (C-5)
n

where

ad(v,) = 8 fdf exp(i2nfr) O(v,f) =

P
swﬂy - ap|)]

for |v| < %
w /A
- for all «
0 for i >1
= (1 - ajv]) sinc [%(1 - A'”'E] roct(% Av) . (C-6)

Interpolation rule (C-5) uses the available slices of information in the

v,v plane of figure 8. A special case of (C-6) is

8 d(v,0) = (1 - 8lv}) rect(} av) . (c-1)
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TCF RECOVERY

From (C-1) and (B-1),

R(T,x) = S‘.du df exp(i2rvt + f2«fx) A1(v.f) 0(v,f) =
te
= Ry(t,r) @ Jlt,) =

-5 3> RO, 00) a%0(t - Bx - 0a)  for all e, (C-8)
n A
n+k even

where

829(t,) = a2 [[dv ¢t exp(izmut + 12uF2) D(v,f) =

sin(vt/a) - sind(L%)

T ! .
A
- s1n(;§i : ::n(ﬂ')' m(ﬁl : ;:n(ﬁl for all t,c . (c-9)
3 2 A 2
Particular values are
(s g.}) - stne(d) (C-10)

It should be observed that (C-8) dictates two-dimensional interpolation in

the t,r plane of figure 8. Attempts at simpler one-dimensional interpolation

in t or t alone are bound to fail.
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PROPERTLES OF P1t,1)

The two-dimensional function B(t,t) is unlike any proposed previously

for interpolation of TCF R(t,+). Some of its properties are 1isted here,

J(-t,v) o« Plt, - 1) = Pt,x) . (C-11)
2 2 |
82 Jr(ma,2q8) = 51“-1§T$5=-‘i§;1131 . (C-12)
" -

Ifmuwqorme-q, thend= 0, If m=gq, then t = /2, while if m = -q,
then t = -¢/2, giving

02 S (+qn, 2q8) = sinc(2q) . (C~13)

Therefore J(ma,2qa) = O for all m,q, except that A217(0.0> »= 1, Similarly,

,.B'«m + %)A.(Zq + 1)1) =0 for all m,q . (C-14)
If we define

Jtir) = J(t,2q) - I . (C-15)
v

then
dint) =3¢t , (C-16)

meaning that J(t,r) is symmetric about the 45° line in the t,t plane.
Figure C-1 depicts some sample values of & in the first quadrant. 1In

particular,

C-4
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2§ -1
2 U (ma,(2q + 1)8) = )
( ) 2l - (g + D

]
-, (C-17)
Aln+ 52 - ¢

Azﬁ'@m + ]2')A.2qA) -

Interpsiation function B(t,r) decays glowest along the t = £¢/2 lines in
the t,t plane, and fastest along the t = 0 and « = 0 1ines. So direct
interpolation of the TCF is not best approximated by horizontal or vertica)

slices, but in fact, by points between these slices,

T + /2
7FA '/ f
&k o & o
w 5 , %
/
=4 /
1 = 2 i
S = T
/
/
1 =4 = ~4
SERULEE = E
/
/
4
1 o o @E o
0 1 2 3 4

Figure C~1, Sample Values of AZJ?(t,r)
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APPENDIX D. EVALUATION OF CAF

The original CAF of waveform s(t) 1s given by (73), in terms of
spectrum S(f) defined 1n (69). As in (87), we again presume that only the

discrece frequency calculations

S(ﬁ%) - AZ exp(-12enk/N) s(ka)  for |n| <% (D-1)
k

are availat'e. Since the frequency increment is b¢ = (NA)". we
approximate CAF (73) according to

X(v,7) = ;d' 2 exp(i2r ﬁ% 1) §<}T'Al + %) §*(i2- - %) -
n

- j'df exp(i2efz) S(f + g) S*(f - !zl) F}i E &(f - F%) -
n
- x(v.T)éE 8(tr - n NA) =
n

.Z x(v, T - n Na)  for all w,r . (0-2)
n

Since waveform s(t) 1s approximately 1imited to ltl < T/2 (see (84) and
figura 9), then CAF x(v,t) 1s approximately limited to |x| < T, as may

be seven hy substituting /32) into (34):
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x(v,t) = f.dt exp(-12wvt) s(t + %) s*(t - %) . (L-3)

iherefore, the approximate CAF X takes the appearance shown in figure D-1.

It 1s seen that overlap is negligible if we take

N
o5

T < NA - T. 1‘el' N > . (0‘4)

Thi: revuirement on the FFT size in (D-1) 1s the same as that established in

(93) for the approximate WDF W.
DLISCRETIZATION IN v and «

In order to utilize available samples (D-1) in the evaluation of
app-oximation (D-2), we restrict the evaluation of the approximate CAF to
frequency-shift values

~ 2 Bl - an -
XEL o = S em(ize gh o 30D TAD foranc . (0-5)

n

Furthermore, we consider cnly the particular values of time delay given by

X(ZD, q8) = 5L 2 exp(12ena/N) S(E) §7(LH) (0-6)
n

since ths right-hand side is now an N-point FFT for each m value of interest.

N values of q are swept out by each FFT. Compare (D-6) with (111).
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<N

(v, ©)

P
K o

~Na -T 0 T M-T  Na

Figure D-i, Delay-Aliased CAF

0-3
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APPENDIX E. TCF OF IMPULSIVELY-SAMPLED WAVEFORM

Suppoce continuous waveform s(t) is sampled with an infinite impulse

train (with delay to) yielding impulsive waveform

s,(t) = 5(t) 8 2 §(t -ty - ka) .
K

The corresponding TCF is
R(t)=5(t+1)s*(t-1)-
 ARAAREEIAL 2/ 4 2

= R(t,v) A"'ZZ §(t -t + 3 -ka) 8(t-t, -3 -m). (E-2)
k m

This function has impulses in the t,x plane at

- . - k+m
t t° + 2 ka t to + 2 A

- . - -
Furthermore, the area of each of these¢ impulses is 1:

J:(dtdf Bt -t +7-Kka) St -t -7 -mA)-fdt §(r + ma ~ka) =1 .
(E-4)

So (E-2) can be expressed alternatively as

Ry(t,r) = R(t,7) AZE E St -ty - EEDa) a(r - (k ~ma) . (E-5)
k m
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Now let
n=XK+m, Lok -m,.

Then n + & must be even, giving
Ry(tsr) = R(t,0) o8 E st -ty - Do) scr-00) -
n L
n+k even

-0 > 2R(t°+§a. 1) 8t - t, - Doy s(r-na) .
nn

n+L even

(E-6)

(E-7)

This 1s a s1ight generalization of (B-1), to allow for delayed sampling.

Thus, the two approaches, (&-1) and (E-1), yield identical results.
FUNDAMENTAL TWO-DIMENSIONAL SAMPLING PATTERNS

Suppose, in (B-1), that we let
R(t,t) =1 for all t,«x .
Then R,(t,x) there approaches

0 22 > Y s - )
1

n+d  even

But, at the same time, use of (E-8) in SCF (35) yields

Alv,f) = &(v) &(f) ,

(E-8)

(E-9)

(E-10)
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while (B-5) and (B-8) approach

yh =S S a< -'2) a( -54). (E-11)
q m

g+m even

Thus, (E-9) and (E-11) are a double Fourier transform pair:
a.‘(u.f) - J‘Idt dv exp(-i2avt - {2afx) ri(t.'t) . (E-12)

They generalize one-dimensional result (7)& (8) to two dimensions with

interspersed sampling. The impulse patterns of I".‘(t.r) and a1(u,f) in

their respective domains are displayed in figures E-1 and E-2.
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Figure E-1. 1Impulse Locations for r1(t.1) in (E-9)

fa
A
° 31 o 0
o 19 . °
) it o °

13—

Figure E-2. Impulse Locations for a1(o.f) in (E-11).
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